42crmo鋼板,【Q460c鋼強度鋼板】多種規格可選_眾鑫42crmo冷軋耐磨錳鋼板圓鋼金屬材料(漳州市分公司),固定電話:【18762195566】,移動電話:【18762195566】,聯系人:劉經理,經濟技術開發區大東鋼管城 發貨到 福建省 福州市、廈門市、泉州市、漳州市、龍巖市、寧德市、南平市、莆田市、三明市 薌城區、龍文區、云霄縣、漳浦縣、詔安縣、長泰區、東山縣、南靖縣、平和縣、華安縣、龍海區。" />
產品參數 | |
---|---|
產品價格 | 電議 |
發貨期限 | 電議 |
供貨總量 | 電議 |
運費說明 | 電議 |
材質 | 42crmo鋼板 |
規格 | 2200*9600 |
加工方式 | 激光切割 |
地址 | 山東 |
運輸方式 | 專線物流 |
范圍 | 生產基地位于【聊城】,供應范圍覆蓋福建省 福州市、廈門市、泉州市、漳州市、龍巖市、寧德市、南平市、莆田市、三明市 薌城區、龍文區、云霄縣、漳浦縣、詔安縣、長泰區、東山縣、南靖縣、平和縣、華安縣、龍海區等區域。 |
。在激光功率密度不變時,隨著垂直于掃描方向上的光斑寬度增加,硬化層寬度呈正比例增加,硬化層深度則先增后減,距離硬化層中心深處相同距離點的曲率則逐漸減少。結論通過優化激光淬火工藝參數,控制激光淬火的熱傳導時間和深度方向的溫度梯度分布,可以在表面不熔化的前提下,獲得較深的硬化層。光斑尺寸對42CrMo鋼板激光深層淬火硬化層深度和硬化層均勻性有較大影響,選擇較大的光斑寬度可以得到更為均勻的硬化層。
本文對實驗用鋼42CrMo進行了成分測定、熱處理工藝設計、組織表征、性能檢測與分析等研究。采用Jmat-pro軟件模擬了42CrMo鋼的冷卻轉變過程,并實測了實驗用鋼的連續冷卻轉變曲線和等溫轉變曲線,利用OM、SEM、硬度測量等手段分析了不同冷卻速度和等溫溫度下的組織及特征,特別是貝氏體轉變區間、類型、特征和含量等與硬度的關系,通過熱處理工藝設計調控組織,建立了觀組織與硬度、韌性和耐磨性等之間的關系。42CrMo鋼板的連續冷卻轉變曲線CCT圖表明,Ac1為743℃,Ac3為792℃,在實驗的冷速范圍內,存在有先共析鐵素體、珠光體、貝氏體和馬氏體四個轉變區;冷速大于3℃/s,獲得羽毛狀上貝和針片狀下貝為主的復相組織,隨冷速增加,組織中馬氏體含量增加,混合貝氏體相中上貝氏體量減少,硬度呈上升趨勢,冷速20℃/s,獲得馬氏體基體+(3%5%)下貝氏體的復相組織。
等溫轉變曲線TTT圖表明,在410℃500℃區間等溫將發生上貝氏體轉變,組織為羽毛狀特征為主,下貝氏體轉變的等溫溫度介于310℃410℃之間,組織為針片狀貝氏體+板條狀馬氏體的復相組織,隨等溫溫度降低,馬氏體含量增加;在560℃-590℃之間等溫出現的大量針狀魏氏組織,與實驗材料組織不均,晶粒粗大有關。42crmo鋼板調質熱處理工藝實驗結果表明,淬火加熱溫度840℃,采用18%水基淬火介質冷卻,獲得下貝氏體含量約為20.3%的馬/貝復相組織,經560℃回火,其綜合力學性能達到良好匹配;等溫熱處理工藝實驗表明,在320℃380℃區間等溫,
歡迎前來了解眾鑫42crmo冷軋耐磨錳鋼板圓鋼金屬材料(漳州市分公司)發布的 耐磨鋼板NM400價格, 耐磨鋼板NM400廠家信息,服務質量好,性價比高,為您節省采購成本!
為了查找某42CrMo鋼板制螺栓斷裂失效的原因,采用光學顯鏡、掃描電鏡、電感耦合等離子體光譜儀、碳硫分析儀、硬度計等對斷裂件的宏觀斷口形貌、顯組織、硬度和化學成分等進行觀察和檢測分析。結果表明:螺栓光桿和法蘭盤轉接圓角處局部過燒和脫碳是引起螺栓斷裂的主要原因,使用過程中螺栓光桿和法蘭盤轉接圓角處的應力集中是導致螺栓斷裂的誘發因素。通過嚴格控制熱鐓溫度,退火氣氛,增加毛坯的切削余量,可有效防止過燒及脫碳層在成品零件上出現,避免類似事件的發生。
利用ABAQUS有限元分析軟件及二次開發對42CrMo鋼板船用曲拐加熱和淬火過程進行數值模擬。結果表明:工件分段加熱過程中,表面與心部的 溫差出現在第二個保溫階段,達到88.6℃;第二階段保溫結束時,工件內外基本無溫差,珠光體完全轉變為奧氏體。在淬火過程中,曲拐表層形成了一定厚度的馬氏體組織,至半馬氏體處厚度約為70 mm,其表面馬氏體含量的體積分數約為96%;貝氏體主要集中在曲拐的次表層,且其 含量約為56%;曲拐的心部為完全的珠光體組織;殘留奧氏體主要集中在曲拐的表層,且其大含量約為4%。
通過使用光纖激光器,激光熔覆鎳基復合合金粉末在42CrMo鋼表面獲得了成形良好的激光熔覆層。采用掃描電子顯鏡(SEM)、能譜儀(EDS)、X射線衍射(XRD)、顯硬度計和磨損試驗機研究了熔覆層組織形態、物相、化學成分和顯硬度,并對其磨損性能進行了分析。結果表明,激光鎳基復合熔覆層的物相主要有γ-Ni、M7C3、M23C6、CrB、Fe6W6C、Mo2FeB2和WC。熔覆層組織主要以胞狀晶和胞狀樹枝晶為主,并有大量的共晶組織。42crmo鋼板激光熔覆層的顯硬度分布比較均勻,相對基體硬度提高了1.42倍。激光熔覆層的耐磨性是基體的3倍以上,熔覆層的主要磨損機制為磨粒磨損,并伴隨著粘著磨損和氧化磨損。
本試驗在一定切削條件下對42CrMo鋼板進行干切削,研究刀具累計加工1 035 s過程中前后刀面的磨損形貌。試驗結果表明:累計加工時間T從0增加到1 035 s的過程中,刀具前刀面參與切削的區域亮度增加,磨損區域增大;當加工時間T為1 035 s時,刀具前刀面磨損明顯,出現顏色較深面磨損區域、亮度較高的部分刀具涂層材料磨損區域、磨粒磨損明顯的磨損區域。加工時間T從0增加到435 s的過程中,刀具后刀面出現明顯的磨損帶,涂層材料磨損帶逐漸增大。加工時間T從435 s增加到1 035 s的過程中,磨損帶緩慢增大,出現基體磨損現象,隨著磨損時間延長,基體磨損逐漸增大。當加工時間T從48 s增加到1 035 s,已加工表面粗糙度Ra由3.46μm逐漸增大到3.91μm。
在42CrMo鋼板常規處理的基礎上增加了冷處理,研究淺冷處理和深冷處理對42CrMo鋼硬度和耐磨性的影響。結果表明,經淺冷處理和深冷處理后,42CrMo鋼中殘留奧氏體向馬氏體發生轉變,且碳化物析出增多,致使鋼的硬度和耐磨性均有,且深冷處理后硬度和耐磨性幅度高于淺冷處理。
利用JMat-Pro軟件模擬了42CrMo鋼的連續冷卻轉變曲線,并采用DIL805L相變42crmo鋼板淬火膨脹儀實測了鋼的各相變點,對不同冷卻速度下的組織轉變和貝氏體含量進行了分析,并繪制其CCT曲線。結果表明:42CrMo鋼Ac1=743℃,Ac3=792℃。冷速小于0.5℃/s時,組織為先共析鐵素體與珠光體混合組織;冷速0.5~10℃/s之間,存在一定量的貝氏體,隨冷速加快,貝氏體量先增后降,馬氏體含量逐漸增多,使得硬度呈現較大增幅。冷速大于10℃/s,組織為基體馬氏體+少量貝氏體的混合組織。